Virtual planning of extensive jaw reconstructions

mCME articles in Dental Tribune have been approved by HAAD as having educational content for CME credit hours. This article has been approved for 2 CME credit hours.

By Dr. Dr. Ahmad Al-Dam, Dr. Dr. Henning Hanken, Dr. Clarissa Precht, Prof. Dr. Dr. Max Heiland

Surgery is still the essential component of curative therapy of malignant neoplasms of oral cavity. The resection with sufficient safety margins has an immediate impact on the prognosis. Therefore, a partial resection of the jaw is often required. In contrast to the upper jaw defects, which can be treated non-surgically with individual prosthetics and obturators, continuity defects of the lower jaw cause massive restrictions of swallowing, communication and the external appearance. Nowadays, extensive defects are covered in many cases using microsurgical grafts. The extension of the accompanying soft tissue deficit influences the selection of the donor region. The microvascular fibula graft has become the “workhorse” in many departments all over the world, when it comes to reconstruction of the mandible, it can be transplanted with or without a skin island and separated in several segments. Advantages of this bone containing flap in particular are a reliable anatomy at the donor site with few variances of the supplying vessels, a comparatively straightforward technique of flap raising. Alternative donor regions are the iliac crest and the scapula.

In our hands, we favour the primary reconstructions of the mandible. That means that the tumour resection – with verifying the in sano resection using intraoperative frozen sections of the soft tissue margins - and consecutive reconstruction in the same operative session, which can be ideally performed synchronically in two operation teams. Thus, strain for the patient thereby can be reduced and the adjuvant therapy can begin earlier. However, the exact recovery of the preosseous jaw relations, which is a prerequisite for establishing a satisfying occlusion, is difficult. Even with preoperatively customized osteosynthesis plates, the osseous graft must often be segmented after harvesting to simulate the curve of the mandible.

Nevertheless, the exact creation and positioning of the graft is of great importance for the rehabilitation of the facial symmetry and the masticatory function. Increasing the predictability of the surgical reconstruction outcome can be achieved using a new computer-aided, three-dimensional planning method. This planning enables us to implement precisely the virtually planned jaw resection and the creation of a suitable osseous graft with the help of CAD/CAM templates and an individual osteosynthesis plate. In this article, the technology used by us is described with the aid of an illustrative example in which the reconstruction of the mandible was performed using a CAD/CAM preplanned microsurgical fibula graft.

Process of the planning of complicated facial-surgical interventions

The computer-based virtual planning of complicated surgical interventions in the face contains a planning phase, a production phase and the operation phase.

The planning phase begins with acquiring a defect-related, high-resolution, axial scan of the facial skeleton. This can be performed using a conventional CT or a cone-beam CT (thus minimizing of exposure to radiation). When malignant disease is present, the CT of the head and neck, which is necessary in respect of tumour staging, can be used for the planning. In addition, a high-resolution scan of the donor region is required - e.g. the lower leg - which should be combined with an angiography to exclude vessel anomalies. The received data are made anonymous and sent online to the processing company (Materialise (Leuven, Belgium)) via password-protected ftp server. The company then produces a virtual 3D model of both the defect (face) and the transplant donor site (fibula). Now with these data, a web meeting with the engineers of the company and the treating surgeons takes place. In this meeting the resection margins are defined, the segmentation of the bone transplant is discussed and the osseotomy lines are defined. Besides, the positioning of the vascular pedicle and the side of the microvascular vessel anastomosis in the neck will be defined. After the virtual resection of the jaw, the segmentation of the bone transplant is carried out and the osteotomy lines are defined. The received data are made anonymous and sent online to the processing company (Materialise (Leuven, Belgium)) via password-protected ftp server. The company then performs the virtual planning into the OR by the surgeons using prefabricated templates.

Now the production of the surgical resection templates for the facial bone and osteotomy templates for the bone transplant takes place. After the production procedure, a 3D stereotopigraphic model of the postoperative situation (after insertion of the fibula), templates for the osteotomies of the flap and for the tumor resection will be available in the OR. With the help of the 3D model, a 2.5 locking reconstruction plate is manufactured (Synthes, Oberdorf, Switzerland), which is precisely adapted to the postoperative, virtually planned situation.

Intraoperatively, the mandible is surgically exposed so that the resection templates can be positioned to allow performing the bone reconstruction. Thus, strain for the patient thereby can be reduced and the adjuvant therapy can begin earlier. However, the exact recovery of the preosseous jaw relations, which is a prerequisite for establishing a satisfying occlusion, is difficult. Even with preoperatively customized osteosynthesis plates, the osseous graft must often be segmented after harvesting to simulate the curve of the mandible.

Nevertheless, the exact creation and positioning of the graft is of great importance for the rehabilitation of the facial symmetry and the masticatory function. Increasing the predictability of the surgical reconstruction outcome can be achieved using a new computer-aided, three-dimensional planning method. This planning enables us to implement precisely the virtually planned jaw resection and the creation of a suitable osseous graft with the help of CAD/CAM templates and an individual osteosynthesis plate. In this article, the technology used by us is described with the aid of an illustrative example in which the reconstruction of the mandible was performed using a CAD/CAM preplanned microsurgical fibula graft.

Process of the planning of complicated jaw reconstructions

The computer-based virtual planning of complicated surgical interventions in the face contains a planning phase, a production phase and the operation phase.

The planning phase begins with acquiring a defect-related, high-resolution, axial scan of the facial skeleton. This can be performed using a conventional CT or a cone-beam CT (thus minimizing of exposure to radiation). When malignant disease is present, the CT of the head and neck, which is necessary in respect of tumour staging, can be used for the planning. In addition, a high-resolution scan of the donor region is required - e.g. the lower leg - which should be combined with an angiography to exclude vessel anomalies. The received data are made anonymous and sent online to the processing company (Materialise (Leuven, Belgium)) via password-protected ftp server. The company then produces a virtual 3D model of both the defect (face) and the transplant donor site (fibula). Now with these data, a web meeting with the engineers of the company and the treating surgeons takes place. In this meeting the resection margins are defined, the segmentation of the bone transplant is discussed and the osseotomy lines are defined. Besides, the positioning of the vascular pedicle and the side of the microvascular vessel anastomosis in the neck will be defined. After the virtual resection of the jaw, the segmentation of the bone transplant is carried out and the osteotomy lines are defined. The received data are made anonymous and sent online to the processing company (Materialise (Leuven, Belgium)) via password-protected ftp server. The company then performs the virtual planning into the OR by the surgeons using prefabricated templates.

Now the production of the surgical resection templates for the facial bone and osteotomy templates for the bone transplant takes place. After the production procedure, a 3D stereotopigraphic model of the postoperative situation (after insertion of the fibula), templates for the osteotomies of the flap and for the tumor resection will be available in the OR. With the help of the 3D model, a 2.5 locking reconstruction plate is manufactured (Synthes, Oberdorf, Switzerland), which is precisely adapted to the postoperative, virtually planned situation.

Intraoperatively, the mandible is surgically exposed so that the resection templates can be positioned to allow performing the bone reconstruction. Thus, strain for the patient thereby can be reduced and the adjuvant therapy can begin earlier. However, the exact recovery of the preosseous jaw relations, which is a prerequisite for establishing a satisfying occlusion, is difficult. Even with preoperatively customized osteosynthesis plates, the osseous graft must often be segmented after harvesting to simulate the curve of the mandible.

Nevertheless, the exact creation and positioning of the graft is of great importance for the rehabilitation of the facial symmetry and the masticatory function. Increasing the predictability of the surgical reconstruction outcome can be achieved using a new computer-aided, three-dimensional planning method. This planning enables us to implement precisely the virtually planned jaw resection and the creation of a suitable osseous graft with the help of CAD/CAM templates and an individual osteosynthesis plate. In this article, the technology used by us is described with the aid of an illustrative example in which the reconstruction of the mandible was performed using a CAD/CAM preplanned microsurgical fibula graft.
the planned resection. They create a well-defined osteotomy plane. Generally, harvesting of the bone flap (e.g. fibula) is carried out simultaneously through a second team. Harvesting the fibula is performed after exposing the bone in the conventional manner, then fixing the osteotomy templates in the bone with screws. The templates as a surgical guide defines the osteotomies which can be performed exactly in the predefined lines. The individual reconstruction plate can be fixed to the fibula with the flap still perfused on the leg which reduces the time of ischaemia. After harvesting the microvascular fibula graft, the surgeon positions the transplant into the bony defect of the mandible. The microvascular anastomosis is then performed on the neck vessels. Postoperative 3D cone-beam imaging allows the fusion of pre- and postoperative data and is later used for the planning of the dental implants.

Case presentation

In August 2010, a 30-year-old female patient was admitted to our department with a histopathologically proven chondroblastic osteosarcoma of the left anterior mandible. The microvascular anastomosis was performed to the right facial vessels, the skin island was used to reconstruct the tissues of the floor of the mouth (Figure 1). After the operation, the patient was transferred to the immediate care unit and was then finally discharged from the hospital 10 days after surgery.

Following the reconstruction operation, some minor surgical procedures were carried out to optimise the appearance of the chin and realise the dental rehabilitation. After the flap was transferred as the neo-mandible to the head of the patient and fixation was finished with screws to the bilateral ascending rami (Synthes, Oberdorf, Switzerland). The anastomosis was performed to the right facial vessels, the skin island was used to reconstruct the tissues of the floor of the mouth (Figure 1). After the operation, the patient was transferred to the immediate care unit and was then finally discharged from the hospital 10 days after surgery.

Conclusions

A good functional rehabilitation and the best possible aesthetic result after reconstruction of extensive jaw defects are of great importance for the patient. The method of virtual planning of jaw reconstruction and reconstruction, which is introduced here, leads reliably to predictable reconstruction results and simplifies the operation process considerably. We have applied this procedure since April 2011 up to now with 52 patients successfully and have established this as a routine workflow in our department.

References


Editorial Note: Full list of references is available from author. m

Contact Information

University Medical Center of Hamburg-Eppendorf
Department of Oral and Maxillofacial Surgery
Head: Prof. Dr. Dr. M. Heiland
Maximistraße 52
22604 Hamburg - Germany
Contact: Prof. Dr. Maaike Heiland
m.heiland@uke.de

MCE Self Instruction Program

CAPP with Dental Tribune with its MCE Self Instruction Program gives you the opportunity to have quick and easy way to meet your continuing education need. MCE offers you the flexibility to work at your own pace through the material from its location any time. The content is international, drawn from the upper echelon of dental medicine, but also presents a regional outlook in terms of perspective and subject matter.

Membership

Take membership for one year subscription for the newspaper DENTAL TRIBUNE - 15% AED
Take article subscription for newspaper subscription: 38% AED per issue.

After the payment, you will receive your membership number and will be able to start the program.

Completion of mCME

• mCME participants are required to read a continuing medical education (CME) article in each issue.
• Each article offers 2 CME Credit and followed by quiz questions, which is available in: http://www.cappmea.com/mCME/questions.html.
• Each quiz has to be return to cappmea.com, at latest: +97143686883 in three months from the publication date.
• Minimum passing score of 80% must be achieved to claim credits.
• No more than two unanswered question can be submitted.
• Validity of the article - three months.
• Validity of the subscription - one year.
• Collection of Credit hours: you will receive the summary report with Certificate maximum one month after expiry date of your membership. For single subscription Certificate and summary report will be send one month after the publication of the article.

The answers and critiques published herein have achieved in order to claim credit achieved in order to claim credit.

Instruction Program gives you the opportunity to work at your own pace through the material in the publication of the article.
• Each issue.

• mCME participants are required to read a continuing medical education (CME) article in each issue.
• Each article offers 2 CME Credit and followed by quiz questions, which is available in: http://www.cappmea.com/mCME/questions.html.
• Each quiz has to be return to cappmea.com, at latest: +97143686883 in three months from the publication date.
• Minimum passing score of 80% must be achieved to claim credits.
• No more than two unanswered question can be submitted.
• Validity of the article - three months.
• Validity of the subscription - one year.
• Collection of Credit hours: you will receive the summary report with Certificate maximum one month after expiry date of your membership. For single subscription Certificate and summary report will be send one month after the publication of the article.

The answers and critiques published herein have achieved in order to claim credit achieved in order to claim credit.

Instruction Program gives you the opportunity to work at your own pace through the material in the publication of the article.
• Each issue.

• mCME participants are required to read a continuing medical education (CME) article in each issue.
• Each article offers 2 CME Credit and followed by quiz questions, which is available in: http://www.cappmea.com/mCME/questions.html.
• Each quiz has to be return to cappmea.com, at latest: +97143686883 in three months from the publication date.
• Minimum passing score of 80% must be achieved to claim credits.
• No more than two unanswered question can be submitted.
• Validity of the article - three months.
• Validity of the subscription - one year.
• Collection of Credit hours: you will receive the summary report with Certificate maximum one month after expiry date of your membership. For single subscription Certificate and summary report will be send one month after the publication of the article.

The answers and critiques published herein have achieved in order to claim credit achieved in order to claim credit.

Instruction Program gives you the opportunity to work at your own pace through the material in the publication of the article.
• Each issue.

• mCME participants are required to read a continuing medical education (CME) article in each issue.
• Each article offers 2 CME Credit and followed by quiz questions, which is available in: http://www.cappmea.com/mCME/questions.html.
• Each quiz has to be return to cappmea.com, at latest: +97143686883 in three months from the publication date.
• Minimum passing score of 80% must be achieved to claim credits.
• No more than two unanswered question can be submitted.
• Validity of the article - three months.
• Validity of the subscription - one year.
• Collection of Credit hours: you will receive the summary report with Certificate maximum one month after expiry date of your membership. For single subscription Certificate and summary report will be send one month after the publication of the article.

The answers and critiques published herein have achieved in order to claim credit achieved in order to claim credit.

Instruction Program gives you the opportunity to work at your own pace through the material in the publication of the article.
• Each issue.